Solid-Phase Synthesis of Acrylamide Using Polymer-Supported β-Selenopropionic Acid

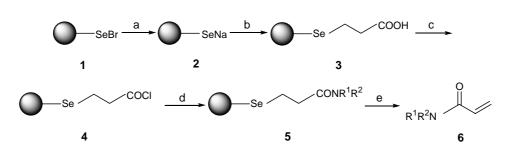
Shou Ri SHENG¹*, Xing Cong WANG¹, Xiao Ling LIU¹, Xian HUANG²

¹ Department of Chemistry, Jiangxi Normal University, Nanchang 330027 ² Department of Chemistry, Zhejiang University (Xixi Campus), Hangzhou 310028

Abstract: A novel polystyrene-supported β -selenopropionic acid has been developed and applied to facile synthesis of acrylamides.

Keywords: Solid phase organic synthesis, β-selenopropionic acid, acrylamide.

Polymer-supported reagents have found increasing applications for the preparation of small organic molecules during the past few years¹. The purification of the organic products has been greatly simplified through the use of polymer-supported reagents. Acrylamides, useful monomers for polyacrylamides and intermediates in organic synthesis, have been known to chemists for a long time. Several solid-phase synthesis of amides have already been reported, but to the best of our knowledge, all previous reports for related solid-phase synthesis of acrylamides have paid no attention to the use of phenylseleno group as leaving group. Polymer-bound selenides have proven to be versatile traceless linkers, which give access to alkenes by oxidation followed by β -elimination². Meanwhile, the use of the selenium reagents immobilized on polymer-resin has provided significant advantages, including decrease volatility and simplification of product work-up. With the successful synthesis of carbonyl compounds from polymer-bound vinylic selenides,³ we here wish to report a facile solid-phase synthetic approach to acrylamides based on a novel polystyrene-supported β -selenopropionic acid (Scheme 1).


Treatment of polystyrene-supported selenium bromide 1^2 with NaBH₄,⁴ followed with β -bromopropionic acid to afforded polystyrene-supported β -selenopropionic acid **3**. The minimum loading of COOH of resin **3** verified by their FT-IR spectra exhibiting a strong carbonyl absorption at 1708 cm⁻¹ was determined by acid-base titration⁵ to be 1.23 mmol COOH/g. Reaction of resin **3** with excess thionyl chloride in anhydrous 1,2-dichloroethane under reflux for 10 h gave polystyrene-supported β -selenopropanoyl chloride **4**, which showed a single strong carbonyl absorption at 1768 cm⁻¹ in FT-IR. After removing excess thionyl chloride, and without further isolation, it was allowed to react with corresponding primary or secondary amines in the presence of anhydrous

^{*} E-mail: shengsr@163.com

triethylamine to form β -selenopropanamide resins 5 as evidenced by FT-IR with appearance of carbonyl absorption at 1645-1665 cm⁻¹ and complete disappearance of peak at 1708 cm⁻¹.

As expected, oxidation-elimination of resin **5** was very rapid and efficient with excess of 30% hydrogen peroxide at room temperature to produce the corresponding acrylamides **6** in good yields (85-93 %) and with high purity of crude materials in all cases (>95 % by ¹H NMR analysis). A summary of these results is given in **Table 1**. The residual resin with no residual carbonyl absorption in FT-IR shown the oxidative cleavage was complete.

Scheme 1

Reagents and conditions: (a) NaBH₄, DMF/THF, rt, 6 h; (b) $Br(CH_2)_2COOH$, rt, 10 h; (c) $SOCl_2$, $CICH_2CH_2CI$, reflux, 10 h; (d) R^1R^2NH , Et_3N , rt, 2 h; (e) H_2O_2 , CH_2Cl_2 , rt, 30 min.

 Table 1
 Yields and purities of acrylamides

Product	\mathbb{R}^1	\mathbb{R}^2	Yield (%) ^a	Purity (%) b
6a	C ₆ H ₅	Н	90	>95
6b	$4-CH_3C_6H_4$	Н	93	>95
6c	$4-ClC_6H_4$	Н	92	>95
6d	C ₆ H ₅ CH ₂	Н	89	>95
6e	$i-C_3H_7$	$i-C_3H_7$	88	>95

a) Overall yields based on the loading of resin **3**. b) Determined by ¹H NMR (400 MHz).

Acknowledgment

Project 29932020 was supported by the National Natural Science Foundation of China.

References

- 1. S. J. Shuttleworth, S. M. Allin, P. K. Sharma, Synthesis, 1997, 1217.
- 2. K. C. Nicolao, J. Pastor, S. Barluenga, N. Winssinger, Chem. Commun., 1998, 1947.
- 3. X. Huang, S. R. Sheng, Tetrahedron Lett., 2001, 42, 9035.
- 4. H. Qian, X. Huang, Synlett, 2001, 1571.
- 5. C. Schuerch, J. M. Frechet, J. Am. Chem. Soc., 1971, 93, 492.

Received 12, February, 2003